Multistable pulselike solutions in a parametrically driven Ginzburg-Landau equation.

نویسندگان

  • I V Barashenkov
  • S Cross
  • Boris A Malomed
چکیده

It is well known that pulselike solutions of the cubic complex Ginzburg-Landau equation are unstable but can be stabilized by the addition of quintic terms. In this paper we explore an alternative mechanism where the role of the stabilizing agent is played by the parametric driver. Our analysis is based on the numerical continuation of solutions in one of the parameters of the Ginzburg-Landau equation (the diffusion coefficient c), starting from the nonlinear Schrödinger limit (for which c=0). The continuation generates, recursively, a sequence of coexisting stable solutions with increasing number of humps. The sequence "converges" to a long pulse which can be interpreted as a bound state of two fronts with opposite polarities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Ising and Bloch domain walls in a two-dimensional parametrically driven Ginzburg-Landau equation model with nonlinearity management.

We study a parametrically driven Ginzburg-Landau equation model with nonlinear management. The system is made of laterally coupled long active waveguides placed along a circumference. Stationary solutions of three kinds are found: periodic Ising states and two types of Bloch states, staggered and unstaggered. The stability of these states is investigated analytically and numerically. The nonlin...

متن کامل

Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation

We performed a detailed investigation of the stability of analytic pulselike solutions of the quintic complex Ginzburg–Landau equation that describes the dynamics of the field in a passively mode-locked laser. We found that in general they are unstable except in a few special cases. We also obtained regions in the parameter space in which stable pulse solutions exist. These stable solutions do ...

متن کامل

Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion

Time-localized solitary wave solutions of the one-dimensional complex Ginzburg-Landau equation ~CGLE! are analyzed for the case of normal group-velocity dispersion. Exact soliton solutions are found for both the cubic and the quintic CGLE. The stability of these solutions is investigated numerically. The regions in the parameter space in which stable pulselike solutions of the quintic CGLE exis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 68 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003